Learn. Create. Innovate.

Virtual Open House

November 7 @ 11 AM EST
Applications Due December 10th
http://metals.hcii.cmu.edu

Welcome!

• Ken Koedinger, Director

• Michael Bett, Managing Director

Extended Welcome from Our Learning Science Faculty

Vincent Aleven
Justine Cassell
Sharon Carver
Ken Koedinger
Jessica Hammer
Chinmay Kulkarni
Marti Louw
Bruce McLaren
Amy Ogan
Carolyn Rose
John Stamper

Science & technology of learning: important, interesting, challenging!!

• Education is important
• Unlocking the mysteries of human learning is interesting
• Tech innovation is challenging, fun, powerful

Intelligent tutors helping city kids catch up in math
Learning games on mobiles in Africa
Virtual labs & MOOCs scaling education
Intelligent exhibits make doing science fun!
Overview

• CMU & METALS are unique
• Curriculum
 – Capstone
 – Courses
• Finances

CMU Learning Science is Making a Difference

• Real-world impact of Cognitive Tutors
 – 600K students/year
 – *Doubles achievement!*
 – 2011 sale for ~$95M

• OLI college courses
 – 30 open online courses
 – *2x faster & better*

Learning Science & Technology Ecosystem at Carnegie Mellon University

Learning & Training Continues to Boom!!

• New ideas
• New technologies
• New companies
• New careers

Report on industry trends
https://www.td.org/Professional-Resources/State-Of-The-Industry-Report
The Ed Tech Market is Huge!

World market: $1.3 Trillion*
740M Students*
US K12 Market: $8.56B**

Many Spinoffs and Local Companies

Many Corporate Partners

Carnegie Mellon is Unique

Our Values... Innovative, Inspiring, Influential, Quality
Interdisciplinary, Business, Relevant, Impactful

Our Methods... cutting edge, grounded in theory, drawn from industry

Our Research... collaborative

Our Projects... practical and experiential
Overview

- CMU & METALS are unique
- **Curriculum**
 - Capstone
 - Courses
- Finances

Major Focus: Capstone Project

- Apply METALS skills on a two semester-long project
- Integrate skills gathered over the curriculum
- Be a member of an interdisciplinary teams (4-6 people)
- For an external client
- Learn to interview (CTA), research, write reports & give presentations
- Produce a high fidelity prototype

Learn to Create Evidence-Based Innovations in Learning

Gather Field Data

- Review Literature

- Understand Needs

- Understand Research

- Create Effective Designs
...And design some more. Then do it all over again, but better!

Overview

- CMU & METALS are unique
- Curriculum
 - Capstone
 - Courses
- Finances

Overview

- CMU & METALS are unique
- Curriculum
 - Capstone
 - Courses
- Finances

METALS Core Courses

- E-Learning Design Principles & Methods
- Educational Goals, Instruction and Assessment
- Interaction Design Overview
- Tools for Online Learning
- Capstone Project

E-Learning Design Principles & Methods

- Gain a broad understanding of the field and literature.
- Know when to apply evidence & theory
- Learn how to adapt methods to specific needs

Ken Koedinger
TA: Mimi McLaughlin

Example problem ratio
Concreteness of example
Timing of Feedback
Grouping of topics/subtopics
Who explains
Spaced practice
Focused practice
Gradually varied
Distributed practice
Study examples
Study concepts
Real-world
No-feedback
Feedback
Block topics in chapters
Interleaved topics
Block topics in chapters
Interleaved topics
Explain
Ask for explanation
Explain
Ask for explanation
Understand the best form of instruction

- More assistance vs. more challenge
 - Basics vs. understanding
 - Education wars in reading, math, science...
- Researchers like binary oppositions too. We just produce a lot more of them!
 - Massed vs. distributed (Pashler)
 - Study vs. test (Roediger)
 - Examples vs. problem solving (Sweller ...)
- Direct instruction vs. discovery learning (Klahr)
- Re-explain vs. ask for explanation (Chi, Renkl)
- Immediate vs. delayed (Anderson vs. Bjork)
- Concrete vs. abstract (Pavio vs. Kaminski)
 - ...

Instructional Complexity

How many instructional options are there?

What instruction is best?

More help, passive

More challenge, active

Spacing of practice

Focused practice

Distributed practice

Example-problem ratio

Study examples

Test on Problems

Gradually widen

Distributed practice

Concrete

Concrete

Mix

Abstract

Mix

Concrete

Interleave topics

Word Problem

Starting with some number, if I multiply it by 8 and then add 66, I get 81.90. What number did I start with?

Equation

x * 6 + 66 = 81.90

Creating Cognitive Models is not Obvious

Which is hardest for algebra students?

Story Problem

As a waiter, Ted gets $6 per hour. One night he made $66 in tips and earned a total of $81.90. How many hours did Ted work?

Word Problem

Equations are hardest for students...

Math educators say: story or word is hardest

Expert blind spot!

Experts do not know what they know: They are incorrectly think equations are easy for students

>315^2 = 205 trillion options!

Science.
Educational Goals, Instruction, and Assessment

Students will learn to use scientifically-based principles & practical strategies for:

- developing learner models & educational goals based on analysis of the knowledge, skills, and dispositions required for understanding and mastery
- aligning the instructional program and its valid assessment with learners and goals
- considering additional aspects of learning environments that may impact implementation and evaluation

Reading, and Seminar Discussion

Figuring Out How this All Works...

Course Project

Actually Apply Course Big Ideas

1. Context & Initial Resources
2. Anticipated Learner Profile
3. Learning Goal Specification
4. Assessment Design
5. Instructional Design
6. Research Design
Tools For Online Learning

- This course is expected to give you
 - an overview of current educational technology.
 - hands on experience with educational technology used in online learning
- Hands on projects every couple of weeks
- Final project build out a complete course module
Example Elective Courses

Technology
- Personalized Online Learning
- Design of Educational Games
- Applied Machine Learning
- Computational Models of Discourse Analysis
- Design & Engineering of Intelligent Information Systems
- Role of Technology in Learning in the 21st Century
- The Big Data Pipeline
- Mobile Service Innovation

Psychology
- Cognitive Development
- Human Expertise
- Applications of Cognitive Science
- Research Methods for the Learning Sciences
- Role of Technology in Learning in the 21st Century
- Scientific Research in Education
- Learning Analytics and Educational Data Science

UX Design
- Human Factors
- Stats: Experimental Design for Behavioral and Social Sciences
- Design of Educational Games
- Service Design Social Perspectives in HCI
- Computer Science Perspectives in HCI
- Research Methods in Human Centered Design
- Learning Media Design
- Learner Experience Design

General Electives Continued

- Crowd Programming
- Entrepreneurship
- Designing for Service
- Web Accessibility
- Gadgets, Sensors and Activity Recognition in HCI
- Machine Learning Text Mining
- Advanced Web Design
- Designing Human Centered Software
- Social Perspectives in HCI
- Language and Statistics
- Decision Making Under Uncertainty

- >100 others in other part of the university, if approved
 - Business, CFA, H&SS, CS, Robotics, Entertainment Technologies

We want students who are:

- Passionate about using technology to develop better learning outcomes
- With a wide variety of backgrounds including:
 - computer science
 - design
 - psychology
 - education
 - business
 - any educational content domain

On the Philosophy...

- METALS education provides students
 - Skills to engineer & implement innovative & effective educational solutions
 - Real-world project-based experience
 - Team management

- You will learn about all of software development, psychology, & design
 - You will not become an expert in all in 1 year
 - You will learn to communicate with specialists in other areas
What You Will Be Able to Do After METALS? Part 1

• Design, develop, & implement innovative, effective, & desirable educational solutions

• Innovative
 – Use state-of-the-art technologies
 AI, machine learning, language technologies, intelligent tutoring systems, mixed reality, ...

• Effective
 – Apply cognitive & social psychology principles to instructional design, analysis, & redesign
 – Design & evaluate using cognitive task analysis, data mining, statistics, experimentation

What You Will Be Able to Do After METALS? Part 2

• Desirable
 – Design skills to enhance learning and enjoyment

• Innovative: Analytic, psychometric & educational data mining skills

• Putting it together: Develop continual improvement programs that employ experiments & analytics to reliably identify best practices & opportunities for change

Gain Breadth & Expertise

• You may already possess expertise in some of these areas, but not in all.

• METALS will
 – Deepen your prior expertise
 – Broaden your knowledge in new areas

Overview

• CMU & METALS are unique

• Curriculum
 – Capstone
 – Courses

• Finances
Finances

• 2018-2019
 – 3 Semesters
 – $22,500 per semester
 – $22,000 for living expenses
 – $89,500 commitment

• 2018-2019 Tuition Not Set

• Currently offering very small merit-based tuition assistance
 – Not guaranteed
 – If you are skilled & passionate, let us know!

Application Guidelines

• Apply Online

• Applications Due December 10th

• Applications Must Demonstrate
 – Your interest in EdTech
 – Past relevant experience/training
 – Plans after you graduate

• GREs
 – Expected 165 Quantitative, 160 Verbal
 – But we look at the entire application...

• TOEFL
 – 25 or better in 3 out of 4 sections and
 – 23 or better in speaking

Questions?

http://metals.hcii.cmu.edu

Applications Due December 10th